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Necessary and sufficient conditions of stability of a linear system of automatic 
control the parameters of which are subjected to the action of a white noise, 
are obtained. The stabilizing control is constructed according to the principle 

of linear feed-back. by me~uring all coordinates of the phase vector ofthesys- 
tern. 

We consider a linear object described by the following system of differentialequatio~: 

c&C/& = Az (t) + bo + 4tp (1) 

where R is a real constant 7~ X n matrix, b and Q are constant n-vectors and z (t) 

denotes the phase vector of the object, The input q is closed in the following manner: 

cp = (r*$E (2) 

where E is white noise of unit spectral density and r is a constant n-vector. We require 
to close the input using the feed-back o = c*z 

(3) 

in such a manner that the resulting system (1) - (3) of stochastic diffe~ntial equations 

is stable (the solution of (1) - (3) is understood in the sense of El]). 
The stochastic stability has been defined by a number of authors (see e, g. [2, 31). 

We shall have in mind the exponential mean square stability [l] . 
Definition [l]. The system (1) - (3) will be called exponentially stable in the 

mean square, if positive numbers N and r. exist such that for every t > t, and for any 
12 -dimensional vector x,, the following inequality holds : 

iv 1 J: (t)l B 4 N I z. I 2 exp E PO - 0 

where 5 (t) is a solution of the system (1) - (3) with the initial condition CE (to) = %, 
and M denotes the mathematical expectation. 

The problem of stabilization is formulated as follows: to find a vector C for which 
the system (1) - (3) is exponentially stable in the quadratic mean, The aim of this pa- 
per is to find the effective algebraic conditions of existence of the stabilizing vector c 

The following notation will be used in formulating these conditions: 

AA = M - A, 6 (X) = det Ah, x (h) = r*Ah-lb, 8 (a) = (4) 

6 (A) x (A), a (A) = 0 (J@ C---h). 

The function x (h) is a transfer function of the linear object (1) from the input U to 
the output $ = r*z, x (h) is a bilinear function, and t) (h) is a polynomial of degree 

k&n - 1, where n is the order of the system (1). 
We shall assume that the pair (A, b) is controllable, i. e, that the vectors 6,Ab,. , ., 
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A%‘b are linearly independent. 
In this case [4] we can choose a vector c such that the characteristic polynomial of 

the. matrix p = A $ bc* has any specified roots. In particular, we can make the mat- 

rix P to satisfy the Hurwitz conditions with any set of the eigenvalues. This, however, 
will guarantee the stability of the system (1) - (3) only when the vector q of noise in- 

tensity is sufficiently small (in the norm). The necessary and sufficient conditions for 

the exponential stability of the system (1) - (3) have been given in a number ofsources 
(see 1 - 3, 5, 61). In the present case the most suitable criterion of stability is the one 
given in [3, 61. The results of these papers imply that the system (1) - (3) will be ex- 

ponentially stable if and only if the following inequality holds: 

q*Hq < 1 (5) 

Here H denotes the solution of the Liapunov matrix equation 

HP + P*H = - rr* (P = A -I- bc*) (6) 

in which the matrix P. is defined by the expression in brackets. For this reason we can 
replace the question of stabilization of the system (1) - (3) by the question of existence 

of a vector c for which the inquality (5) holds; the answer to this is given by the fol- 
lowing theorem. 

Theorem 1. Let the matrix A and vector b in system (1) be such that the pair 
(A, b) is controllable. We denote by 5 (h) a polynomial of degree k < n - 1 with 
the principal coefficient x > 0 satisfying the relation 5 (A)j (--h) = Q, (A) and 

possessing no roots in the half-plane Re h > 0. Such a polynomial exists and is unique. 
Let the vector d and the matrix H be given by the relations 

d*Q W = 5 (V m 
HA + A*H = - rr* + dd”, Hb = 0 (*I 

Then a real vector c stabilizing the system (1) - (3) will exist if and only if the ine- 

quality 
q*Hq < 1 (2) 

holds. The theorem will be proved below. 
We note that the relations (8) form an overdefined system of equations. We shall see 

from the proof of the theorem that Eqs. (8) are always compatible, and this means that the 
matrix H is determined uniquely. In fact, if a matrix H satisfying the system (8) exists, 
then H satisfies the first equation of (8) containing any matrix A’ = A + be*, where 
c is an arbitrary vector. This is due to the fact that HA - HA’. 

Theorem 2. Let the relation q = b hold in the system (1). Then the system (1) 
is stabilizable. 

Theorem 3. Let the polynomial 8 (h) defined by the penultimate formula of(4) 
have no roots in the half-plane Re h > 0. Then the system (1) - (3) is stabilizable 

for any value of the vector q. 
Theorem 3 admits the following interpretation. The transfer functions of the station- 

ary linear objects with finite-dimensional phase space are bilinear functions. The object 
is called a minimum phase object when the numerator of this function is a Hurwitz PO- 

lynomial. As we said before, x (A) can be regarded as a transfer function from the in- 
put cr in the output $ = r*x. From Theorem 3 it follows that if this transfer function 
has a minimum phase, the object perturbed by a white noise of intensity linearly depen- 
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dent on the phase coordinates of the system can be stabilized at any noise level. We note 
that if the transfer function vanishes in the half-plane Re h > 0, the noise exists un- 
der which stabilization is not possible. 

Example 1. Let us consider the following linear stochastic differential equation : 

J”) + (a,,_1 f rlL_-l E)x”“-I’+ . . + (a0 + r&z = ci 

where { is the white noise. A linear combination u = C,,Z + urz’ + . . . + c~__~z(~-~) 
can always be chosen such that the trivial solution of this equation is exponentially stable 

in the mean square (the case b = (I). 

Example 2. Consider a system containing two integrable terms 

51 =n, x2’ = kx, + cp& ‘p = rlrl +- ‘.2X2 

Let us determine the range of variation of the parameters rr, r2, k over which the above 

system can be stabilized., In this case the matrix A and the vectors b, q and r have the 

form 

It is clear that 
1 

I(h) : 3 (r,h + h-J, 8 (h) = r,h + kr, 

When kr,r, > 0 , the transfer function % (h) has a minimum phase and the system (1) 

can be stabilized. Consider the case kr,r, < 0. Then the polynomial 8 (-1) satisfies 

the Hurwitz condition and the following relation holds for 6 (h) :‘c (h) = ) rl ) h + ) kr, 1. 
From this it follows that d, = r,, d, -= I kr, 1 ik. 

We have the following equation for the matrix .I{ : 

IIA + A*H = -rr* + dd* 

and from this it follows that h,r = IL,, = h,, = 0, I~22 = -2r,r,/k. 

The inequality q*Hq < 1 yields the inequality -2rlr,/k < 1, and the latter repre- 
sents the necessary and sufficient condition of stabilizability of the system in question. 

The proof of the theorems formulated above is based on a number cf auxiliary lemmas. 
Let us introduce the following notation: 

Q (h) == 6 (QAh-1, CD, (A) = CD (h) + c&I (3L) 

n (A) = 6 (A) 6 (--A) + bTQT(-h) Q (h) b 

(10) 

where A and CD (3L) are defined by the formulas (4). Clearly (3 and @‘aL are polyno- 
mials the degree of which does not exceed 2n where n is the order of the system (1). 
Their roots are situated symmetrically about the real and imaginary axes, and the roots 
lying on the imaginary axis are of even multiplicity. Therefore the polynomials 0 and 
CD, can be written in the form 

@ (A) = 5 (--h) 5 (A), @cc (A) = 5,(h) 50 (--h) (11) 

where 5 and caare polynomials with real coefficients, with no roots in the half-plane 
Re h > 0. Under this condition the factorization of the form shown in (11) is unique. 

Lemma 1. The following relation holds : 

lim,-+ 5, (A) = f 5 (A) 

Proof. A set of polynomials of degree k < n forms a linear space of dimension 
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n + 1. Let us introduce in tids space the following norm: 

The second relations of (10) and (11) together imply that 
1 

lt5,l$=P+f+, P==)L?(io)do, 5 v= II(io)do 

0 0 

The family of polynomials ,t, can be regarded as a trajectory in a finite-dimensional 

linear space. The assertions made above imply that this trajectory is bounded. Let 

f; ak -+ P as c4k 3 @, B = (0, 1) 

Since the roots of the polynomials caE (A) lie in the half-plane He h Q 0, so do the roots 
of the polynomial 5* . Moreover, the coefficient accompanying the highest degree terms 
in the polynomials 5, is equal to a, so that c* (X) is a polynomial satisfying the con- 
ditions of factorization given above. Consequently, 6* (h) = cs (h), i.e. when a -_) p, 

the trajectory & has a unique limit point represented by the polynomial 5e (A), and this 
means that the trajectory 5, is continuous at the point a = p > 0. 

When a -+ o , the positiveness of the coefficient accompanying the highest degree 

term in the ~lynomial g* (h) can no longer be guaranteed. Repeating the arguments, 

we find that when a --z 0 , the trajectory 5, can only have two limit elements repre- 

sented by the polynomials 5 and -5. Since for a bounded continuous trajectory in a 

finite-dimensional space the set of limit elements is either infinite or consists of a single 

element,therefore when CL + 0 we can have either lim 6, = 5, or lim t;, = - 5 , 
and this completes the proof of Lemma 1. 

Lemma 2. Let p = inf,p*Hq, where H is a solution of the matrix equation(6) 

with the Hurwitz matrix P = A + bc*. The following relation holds: 

p=winn~(u), I(u)= T,r*.(t),2dt 
0 

where z (t) is the solution of the equation 

dxldt = Ax (t) + bu (t), z (0) = q (12) 

and the set U of functions u (t) is defined by the expression within the brackets. 
Proof, Let H be a solution of HP + P*H = --rr+, where P = A + bc* is a 

Hurwitz matrix. It is evident that m 

q+Hq = 
s 

t r*z (t) pdt 

0 

where x (t) is a solution of (lZ),with the function u (t) = c*x (t). 

Let us consider the functional 0~ 

l,(u)= III f*x I”+ a2 12 I2 + U2U2] dt 

0 

The integrand function has been altered in order to make it a positive definite quadratic 
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function of the arguments 5 and u. As we know(see [?‘I), rnin 1, (u) exists and can be 
attained on the function u (t) connected with the solution x (t) of the system (12) by 

the relation u = ca+2 (t), and the matrix P, = A + bc,* satisfies the Hurwitz con- 
ditions. As the result of all this, we have the following obvious relationships : 

inf I, (u)_~ + inf I (u), inf 1% (u) > p, inf I (u) < p 

and from this we ilave inf I (10 = p. 
From Lemma 2 it follows that the necessary and sufficient condition of existence of 

the vector c stabilizing the system (1) - (3) is, that the inequality 

p r= inf I (u.) ( 1 

where 1 (u) is the functional defined in Lemma 2, holds. Since p -= lima+,pa where 

Pa Z min 1, (u), the question of stabilizing the system (1) - (3) reduces to that of 
determining the quantity pa. As was shown in [7], the quantity pa. can be attained on the 
function U, = c,* 2 (t), where 5 (t) is a solution of (12), and the vector C, is inde- 

pendent of the initial conditions. 

In accordance with the procedure described in [8], the vector c,’ is uniquely determined 
from the linear relations introduced by the identitjr 

aca*Q (3t)b = a6 (1L) - (-l)n t;, (3L) (13) 

where 5, (1.) is a Hurwitz polynomial satisfying the condition of factorization 

f, (9 5, C--h) = @,a (A) 

and 6 CL), V (h.), % (A) are given by the formulas (4) and (10). 

We have the following relation for the vector d, = ac, : 

d,*Q (1”) b = a6 (h) - (-I)% (A) (14) 

We note that the polynomial appearing in the right- hand side is of degree h: < n - 1. 
As is shown in [8], the matrix P, = A + bc,* satisfies the Hurwitz conditions. Let 

us introduce the matrix rja, satisfying the relation 

HZ, T P,*H, = -(V* -+ a21 + a2cQcr,*) (15) 

The matrix H, satisfies, at the same time, the relations (see [8]) 

q*H,q = pa, Il,b = -_a&, II,A + A*H, = --Tr* - a'1 i- &2-&*(16> 

From Lemma 1 it follows that when a -+ 0 either 5, --t 5, or 5, + - 5. Passing 
to the limit in the relations (14) - (16), we obtain the proof of Theorem 1. 

The proof of Theorem 2 follows from the second relation of (8). and in this case we 
have p = 0. 

Let us now prove Theorem 3. Let the polynomial 8 (h) have no roots in the half-plane 
ne ?, > 0. Then the polynomial 5 (h) pp a earing in the statement of Theorem 1 co- 
incides with the polynomial 8 0,). Therefore the vector d defined by (7) coincides with 

the vector r. From (8) it follows that H =. 0 , therefore p ~7 0 and the system (1) - 
(3) is stabilizable. 

Note. The proof of Theorem 1 contains a method of constructing a stabilizing feed- 
back of the form (3). If p < I, then the inequality pa < 1 holds for a sufficiently 
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small CC > 0 . We shall show that the vector co which represents the solution of (13), is 
the stabilizing vector. 

Since P, = A + bc* is a Hurwitz matrix, a unique solution of the matrix equa- 
tion HP, + P,*H = - rr* exists. As the matrix G = H, - H satisfies the 
equation GP, + P,*G = --a2(I -f- C,%*), it follows that G > 0 and we have 

q*Hq C q*H,q< 1. AS we have shown above, the condition q*Hq < 1 represents 
the sufficient condition of stability of the system (1) - (3). 
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